首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   4篇
  国内免费   4篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   4篇
  2014年   7篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2004年   7篇
  2003年   1篇
  2001年   2篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1990年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
  1971年   1篇
  1955年   1篇
  1954年   4篇
  1950年   1篇
  1934年   1篇
  1916年   1篇
  1906年   1篇
  1905年   1篇
排序方式: 共有93条查询结果,搜索用时 31 毫秒
31.
The acute toxicity of the aqueous and ethanol extracts of Parkia biglobosa pods against Clarias gariepinus was investigated under laboratory conditions. Agitated behaviours and respiratory distress were also observed during the exposure period. The adverse effects on biochemical parameters were assessed using semi-static bioassays for 28 days. The ethanol extract of P. biglobosa pods was found to be more acutely toxic with a 96 h LC50 value of 13.96 mg l?1 than the aqueous extracts, with a 96 h LC50 value of 19.95 mg l?1 against C. gariepinus. Both extracts induced agitated behaviours and respiratory distress in exposed organisms. The activities of superoxide dismutase (SOD), catalase (CAT) and the concentration of malondialdehyde (MDA) were significantly lower (p < 0.05) in groups of organisms exposed to extracts of P. biglobosa when compared with the control group after 14 days. The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) were also significantly (p < 0.05) lower compared with activities of the enzymes in the control group after 28 days. The current study has shown that the introduction of P. biglobosa pods into aquatic ecosystems is acutely toxic to fish and would possibly be to other non-target aquatic organisms especially invertebrates.  相似文献   
32.
33.
Reconstitution of integral membrane proteins into membrane mimetic environments suitable for biophysical and structural studies has long been a challenge. Isotropic bicelles promise the best of both worlds-keeping a membrane protein surrounded by a small patch of bilayer-forming lipids while remaining small enough to tumble isotropically and yield good solution NMR spectra. However, traditional methods for the reconstitution of membrane proteins into isotropic bicelles expose the proteins to potentially destabilizing environments. Reconstituting the protein into liposomes and then adding short-chain lipid to this mixture produces bicelle samples while minimizing protein exposure to unfavorable environments. The result is higher yield of protein reconstituted into bicelles and improved long-term stability, homogeneity, and sample-to-sample reproducibility. This suggests better preservation of protein structure during the reconstitution procedure and leads to decreased cost per sample, production of fewer samples, and reduction of the NMR time needed to collect a high quality spectrum. Furthermore, this approach enabled reconstitution of protein into isotropic bicelles with a wider range of lipid compositions. These results are demonstrated with the small multidrug resistance transporter EmrE, a protein known to be highly sensitive to its environment.  相似文献   
34.
35.
Transport stoichiometry determination can provide great insight into the mechanism and function of ion-coupled transporters. Traditional reversal potential assays are a reliable, general method for determining the transport stoichiometry of ion-coupled transporters, but the time and material costs of this technique hinder investigations of transporter behavior under multiple experimental conditions. Solid-supported membrane electrophysiology (SSME) allows multiple recordings of liposomal or membrane samples adsorbed onto a sensor and is sensitive enough to detect transport currents from moderate-flux transporters that are inaccessible to traditional electrophysiology techniques. Here, we use SSME to develop a new method for measuring transport stoichiometry with greatly improved throughput. Using this technique, we were able to verify the recent report of a fixed 2:1 stoichiometry for the proton:guanidinium antiporter Gdx, reproduce the 1H+:2Cl antiport stoichiometry of CLC-ec1, and confirm loose proton:nitrate coupling for CLC-ec1. Furthermore, we were able to demonstrate quantitative exchange of internal contents of liposomes adsorbed onto SSME sensors to allow multiple experimental conditions to be tested on a single sample. Our SSME method provides a fast, easy, general method for measuring transport stoichiometry, which will facilitate future mechanistic and functional studies of ion-coupled transporters.  相似文献   
36.
37.
EmrE, a small multidrug resistance transporter, serves as an ideal model to study coupling between multidrug recognition and protein function. EmrE has a single small binding pocket that must accommodate the full range of diverse substrates recognized by this transporter. We have studied a series of tetrahedral compounds, as well as several planar substrates, to examine multidrug recognition and transport by EmrE. Here we show that even within this limited series, the rate of interconversion between the inward- and outward-facing states of EmrE varies over 3 orders of magnitude. Thus, the identity of the bound substrate controls the rate of this critical step in the transport process. The binding affinity also varies over a similar range and is correlated with substrate hydrophobicity within the tetrahedral substrate series. Substrate identity influences both the ground-state and transition-state energies for the conformational exchange process, highlighting the coupling between substrate binding and transport required for alternating access antiport.  相似文献   
38.
Expression and purification of a recombinant LL-37 from Escherichia coli   总被引:2,自引:0,他引:2  
Human cathelicidin-derived LL-37 is a 37-residue cationic, amphipathic alpha-helical peptide. It is an active component of mammalian innate immunity. LL-37 has several biological functions including a broad spectrum of antimicrobial activities and LPS-neutralizing activity. In order to determine the high-resolution three-dimensional structure of LL-37 using NMR spectroscopy, it is important to obtain the peptide with isotopic labels such as (15)N, (13)C and/or (2)H. Since it is less expensive to obtain such a peptide biologically, in this study, we report for the first time a method to express in E. coli and purify LL-37 using Glutathione S-transferase (GST) fusion system. LL-37 gene was inserted into vector pGEX-4T3 and expressed as a GST-LL-37 fusion protein in BL21(DE3) strain. The recombinant GST-LL-37 protein was purified with a yield of 8 mg/l by affinity chromatography and analyzed its biochemical and spectroscopic properties. Factor Xa was used to cleave a 4.5-kDa LL-37 from the GST-LL-37 fusion protein and the peptide was purified using a reverse-phase HPLC on a Vydac C(18) column with a final yield of 0.3 mg/l. The protein purified using reverse-phase HPLC was confirmed to be LL-37 by the analyses of Western blot and MALDI-TOF-Mass spectrometry. E. coli cells harboring the expression vector pGEX-4T3-LL-37 were grown in the presence of the (15)N-labeled M9 minimal medium and culture conditions were optimized to obtain uniform (15)N enrichment in the constitutively expressed LL-37 peptide. These results suggest that our production method will be useful in obtaining a large quantity of recombinant LL-37 peptide for NMR studies.  相似文献   
39.
Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms.  相似文献   
40.
ABSTRACT

Indirect immunofluorescence performed using sections of actively growing maize root apices fixed and then embedded in low-melting-point Steedman's wax has proved efficient in revealing the arrangements and reorganizations of motility-related cytoskeletal elements which are associated with root cell development and tissue differentiation. This powerful, yet relatively simple, technique shows that specific rearrangements of both microtubular (MT) and actin microfilament (MF) arrays occur in cells as they leave the meristem and traverse the transitional region interpolated between meristem and elongation region. Cytoskeletal and growth analyses have identified the transition zone as critical for both cell and root development; it is in this zone that cell growth is channelled, by the cytoskeleton, into a strictly polarized mode which enables root tips to extend rapidly through the soil in search of water and nutrients. An integrated cytoskeletal network is crucial for both the cytomorphogenesis of individual cells and the overall morphogenesis of the plant body. The latter process can be viewed as a reflection of the tight control which cytoskeletal networks exert not only over cell division planes in the cells within meristematic apices but also over the orientation of cell growth in the meristem and elsewhere. Endoplasmic MTs interconnecting the plasma membrane with the nucleus are suggested to be involved in cell division control; they may also act as a two-way cytoskeletal communication channel for signals passing to and fro between the extracellular environment and the genome. Moreover, the dynamism of endoplasmic MTs exerts direct effects on chromatin structure and the accompanying nuclear architecture and hence can help exert a cellular level of control over cell growth and cell cycle progression. Because the inherent dynamic instability of MTs depends on the concentration of tubulin dimers within the cytoplasm, we propose that when asymmetric cell division occurs, it will result in two daughter cells which differ in the turnover rates of their MTs. This phenomenon could be responsible for different cell fates of daughter plant cells produced by such cell divisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号